Eurocode - Basis of structural design

EN 1990 : Sections 3 & 4

COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION

EN 1990 : Section 3

Principles of limit states design

Requirements

SAFETY SERVICEABILITY

of people /of structure

resistance

functions

comfort

stability

appearance

DURABILITY

fatigue

Verification

DESIGN SITUATIONS

persistent, transient, accidental, seismic

AGENTS

gravity, wind, solar radiation, earthquake...

ACTIONS

load, pressure, temperature, ground acceleration...

COMBINATIONS OF ACTIONS

actions likely to occur simultaneously

EFFECTS

force, moment, rotation, displacement

ULTIMATE LIMIT STATES

rupture

collapse

loss of equilibrium

transformation into a mechanism

failure caused by fatigue

SERVICEABILITY LIMIT STATES

deformations

vibrations

cracks

damages adversely affecting use

Design procedure

REQUIREMENTS

SAFETY

SERVICEABILITY

DURABILITY

DESIGN SITUATIONS

AGENTS

ACTIONS

COMBINATIONS OF ACTIONS

EFFECTS

ULTIMATE LIMIT STATES

SERVICEABILITY LIMIT STATES

Limit state design

Structural and load models (physical or mathemetical) using design values for

- actions
- material or product properties
- geometrical data

Load cases should be selected, identifying

- load arrangements,
- possible deviations

from assumed directions and positions of actions,

• *sets of deformations and imperfections,* that should be considered simultaneously

Verifications at limit states

ULTIMATE

• Resistance :

effects of actions $E_d \leq R_d$ resistance

• Static equilibrium :

destabilising actions $E_{d,dst} \leq E_{d,st}$ stabilising actions

SERVICEABILITY

• Criterion C :

design effect $E_d \leq C_d$ design criterion

EN 1990 - Probabilistic methods

CONSEQUENCES OF FAILURE				STRUCTURAL RELIABILITY			
	Description				Level III (full prob.)	Level II (FORM)	Level I (semi-prob.)
class	consequences for loss of human life		economic, social or environmental consequences	class	failure probability P f	reliability index β	multiplication factor <i>K</i> FL
ССЗ	high	or	very great	RC3	10 -7	5,20	1,1
CC2	medium	and	considerable	RC2	10 ⁻⁶	4,75	1,0
CC1	low	and	small or negligible	RC1	10 ⁻⁵	4,27	0,9

(1 year reference period)

EN 1990 : Section 4

Basic variables

Actions and environment influences

Actions and environment influences

<u>CLASSIFICATIONS</u> :

- **permanent** *G* : *self-weight, shrinkage, settlements, prestressing P* (*imposed force/deformation*),...
- variable Q: imposed loads, wind, snow, temperature,...
- accidental A : impacts, explosions, seismic actions...

<u>NOTE</u> : *water* may be permanent or variable *snow, wind, seismic actions* may be variable or accidental

- by **origin** : direct or indirect
- by **spatial variation** : fixed or free
- by **nature or structural response** : static or dynamic

Representative values of actions

Characteristic value (main representative value) :

- mean value if variability small : G_k , P_m
- upper or lower value if variability not small :
 - Gk,inf (5 % fractile), Pk,inf
 - Gk,sup (95 % fractile, i.e. probability of exceedence 5 %), Pk,sup
 - Qk (*climatic actions :* probability of exceedence 2 %/year)
 - AEk (seismic actions)
- nominal value
- value specified for an individual project : Ad

Other representative values of actions

<u>Combination values</u> \mathcal{Y}_0Q_k

- for ultimate limit states of permanent and transient design situation
- for irreversible serviceability limit states

<u>Frequent values</u> $\Psi_1 Q_k$ (e.g. during 1 % of the reference period)

- for ultimate limit states of involving accidental actions
- for reversible serviceability limit states

Quasi-permanent values $\Psi_2 Q_k$ (e.g during 50 % of the period)

- for ultimate limit states involving accidental actions
- for reversible serviceability limit states

Material and product properties

Representative values from standardised tests :

- when a limit state verification is sensitive to variability :
 - **lower characteristic value** (5 % fractile) where a low value is unfavourable
 - upper characteristic value (95 % fractile, i.e. probability of exceedence 5 %) where a high value is unfavourable
- where statistical data are insufficient : **nominal values**
- mean values for structural stiffness and thermal expansion

Effects of repeated actions (fatigue) = reduction of resistance

Geometrical data

Representative values :

- characteristic values (a prescribed fractile) where statistical distribution is sufficiently known
- directly **design values** (e.g. imperfections)

Tolerances for connected parts shall be mutually compatible

Code of Hammurabi (1760 BC)

- "If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death." (Art. 229)
- "If it ruin goods, he shall make compensation for all that has been ruined, and inasmuch as he did not construct properly this house which he built and it fell, he shall re-erect the house from his own means." (Art. 232)

Civil Code of Napoleon (1804)

"If the edifice, built at a set price, perish in whole or in part by defect in its construction, even by defect in the foundation, the architect and the contractor are responsible therefor for ten years." (Art. 1792)

Applicability of standards (calculation methods, e.g. Eurocodes)

Source	CIVIL CODE	LAW		
Technical	JURISPRUDENCE	REGULATIONS		
requirements	of the COURTS			
Application	a posteriori	a priori		
Standards	Referenced	Compulsory only		
(e.g.	good practice	if imposed		
Eurocodes)	but not compulsory	by regulation		

Construction products directive

Eurocodes : "a harmonised tool"

"Beyond the defense of national positions," like Jean MONNET wrote in his Memoirs. *"something new and strong comes into living"* within the team : it's the European spirit which is the fruit of the work together and, above all, of the need to come to a common conclusion after the discussion."

"the European spirit"

COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION

Merci de votre attention