Eurocodes – Background and Applications EN 1995 – Tension Perpendicular to Grain

Dipl.-Ing. Philipp Dietsch

Technische Universität München Chair of Timber Structures and Building Construction Univ.-Prof. Dr.-Ing. Stefan Winter

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Timber – Strength Classes

Table 1 — Strength classes - Characteristic values

		Poplar and softwood species													
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50		
Strength properties (in N/mm ²)															
Bending	f _{m,k}	14	16	18	20	22	24	27	30	35	40	45	50		
Tension parallel	f1,0,k	8	10	11	12	13	14	16	18	21	24	27	30		f, 90 k≈
Tension perpendicular	f1,90,k	0,4	0,5	0,5	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	\leftarrow	1/30 <i>f</i>
Compression parallel	$f_{\rm c,0,k}$	16	17	18	19	20	21	22	23	25	26	27	29		ι,
Compression	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2		f _{v,k} ≈
Shear	f _{v,k}	1,7	1,8	2,0	2,2	2,4	2,5	2,8	3,0	3,4	3,8	3,8	3,8	•	1/10 f _m
Stiffness properties (in kN/mm ²)															
Mean modulus of elasticity parallel	E _{0,mean}	7	8	9	9,5	10	11	11,5	12	13	14	15	16		
5% modulus of elasticity parallel	E _{0.05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10,0	10,7		
Mean modulus of	E _{90,mean}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53		
Mean shear modulus [EN 338]	G _{mean}	0,44	0,5	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00		

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

TECHNISCH

UNIVERSIT

MÜNCHEN

Double tapered, curved and pitch cambered Beams

Distribution of Tension Perpendicular to Grain Stresses

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

MÜNCHEN

Double tapered, curved and pitch cambered Beams

Distribution of Shear Stresses

and Building Construction

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

UNIVERSITÄ

MÜNCHEN

Double tapered, curved and pitch cambered Beams

Distribution of high Shear and Tension Perpendicular to Grain Stresses

Eurocodes - Background & Applications $18^{th} - 20^{th}$ of February 2008, Brussels

Double tapered, curved and pitch cambered Beams

Brittle materials – Size Effect

"A member under tension stress is only as strong as the weakest link"

The strength of a brittle material is a function of its volume under uniform stress.

TECHN

MÜNCHEN

Double tapered, curved and pitch cambered Beams in EC 5

6.4.3 Double tapered, curved and pitched cambered beams

(6) In the apex zone the greatest tensile stress perpendicular to the grain, $\sigma_{i,90,d}$, should satisfy the following expression:

$$\sigma_{t,90,d} \leq k_{dis} \ k_{vol} \ f_{t,90,d} \tag{6.50}$$

with

$k_{\text{vol}} = \begin{cases} \\ \\ \\ \end{cases}$	[1,0	for solid timber						
	$\left\{ \left(\frac{V_0}{V_0} \right)^{0,2} \right\}$	for glued laminated timber and LVL with	(6.51)					
	$\left(\left(v \right) \right)$	all veneers parallel to the beam axis						
k _{dis} = {	_∫1,4	for double tapered and curved beams	(6.52)					
	1,7	for pitched cambered beams	(0.02)					

where:

 $k_{\rm dis}$ is a factor which takes into account the effect of the stress distribution in the apex zone;

 $k_{\rm vol}$ is a volume factor;

 $f_{t,90,d}$ is the design tensile strength perpendicular to the grain;

 V_0 is the reference volume of 0,01m³;

V is the stressed volume of the apex zone, in m^3 , (see Figure 6.9) and should not be taken greater than $2V_b/3$, where V_b is the total volume of the beam.

[EN 1995-1-1:2004; 6.4.3, p. 48ff]

Double tapered, curved and pitch cambered Beams in EC 5

6.4.3 Double tapered, curved and pitched cambered beams

(8) The greatest tensile stress perpendicular to the grain due to the bending moment should be calculated as follows:

$$\sigma_{t,90,d} = k_{p} \frac{6M_{ap,d}}{bh_{ap}^{2}}$$
(6.54)

where:

- $p_{\rm d}$ is the uniformly distributed load acting on the top of the beam over the apex area;
- *b* is the width of the beam;
- $M_{\rm ap,d}$ is the design moment at apex resulting in tensile stresses parallel to the inner curved edge;

with:

$$k_{\rm p} = k_5 + k_6 \left(\frac{h_{\rm ap}}{r}\right) + k_7 \left(\frac{h_{\rm ap}}{r}\right)^2 \tag{6.56}$$

- $k_5 = 0.2 \tan \alpha_{\rm ap} \tag{6.57}$
- $k_6 = 0,25 1,5 \tan \alpha_{\rm ap} + 2,6 \tan^2 \alpha_{\rm ap}$ (6.58)

$$k_7 = 2,1 \tan \alpha_{\rm ap} - 4 \tan^2 \alpha_{\rm ap} \tag{6.59}$$

[EN 1995-1-1:2004; 6.4.3, p. 48ff]

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Double tapered, curved and pitch cambered Beams in EC 5

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Double tapered, curved and pitch cambered Beams

Strengthening Measures

Self-tapping screws with continuous threads or threaded rods

Plywood / Laminated Veneer Lumber

TECHNISCH

UNIVERSIT

MÜNCHEN

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Double tapered, curved and pitch cambered Beams

Strengthening Measures – Screws or threaded Rods

Chair of Timber Structures and Building Construction

Fritz Leonhardt, Vorlesungen über Massivbau

TECHNISCH

UNIVERSITÄ

MÜNCHEN

Eurocodes - Background & Applications $18^{th} - 20^{th}$ of February 2008, Brussels

Double tapered, curved and pitch cambered Beams

Strengthening Measures – Plywood / Laminated Veneer Lumber glued to Timber Member

Strengthening measures (screws / plates) should be designed to carry full tension perpendicular to grain stresses and should cover the entire area under tension perp. to grain stresses (curved area)

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications $18^{th} - 20^{th}$ of February 2008, Brussels

Moisture Conditions

Ice-rink arena (Ingolstadt, MPA BAU)

Gymnasium with skylights (Benediktbeuern, MPA BAU)

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Moisture Conditions – Cracks caused by Shrinking

In Glulam Beams – Crack Distribution enabled

c,90 σ_{t,90} - 90 ΔW

> TECHNISCHE UNIVERSITÄT MÜNCHEN

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Moisture Conditions – Cracks caused by Shrinking

In Glulam Beams – Crack Distribution enabled

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Moisture Conditions – Cracks caused by Shrinking

In Combination with Fasteners – Crack Distribution impeded

(Feldkirchen, Prof. Winter)

 \rightarrow reduction of applicable strength values or cross sections by e.g. k_{cr}

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Notched Beams

Picture: Prof. H. Blaß, TH Karlsruhe

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Notched Beams in Concrete

Fritz Leonhardt, Vorlesungen über Massivbau

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Notched Beams in Timber

 \rightarrow Tensile strength changes with varying angle between load and grain

 $f_{t,90,k} \approx 1/30 \ f_{t,0,k}$

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

MÜNCHEN

and Building Construction

Notched Beams in Timber – Constructive Measures

(6.62)

Notched Beams in Timber

6.5 Notched members

Beams with a notch at the support

It should be verified that

$$=\frac{1,5V}{bh_{\rm ef}} \le k_{\rm v} f_{\rm v,d}$$
(6.60)

Here k_v is a reduction factor defined as follows: For beams notched at the opposite side to the support (see Figure 6.11b)

$$k_{\rm v} = 1,0$$
 (6.61)

For beams notched on the same side as the support (see Figure 6.11a)

$$k_{v} = \min \begin{cases} 1 \\ k_{n} \left(1 + \frac{1.1 i^{1.5}}{\sqrt{h}} \right) \\ \sqrt{h} \left(\sqrt{\alpha(1 - \alpha)} + 0.8 \frac{x}{h} \sqrt{\frac{1}{\alpha} - \alpha^{2}} \right) \end{cases}$$

[EN 1995-1-1:2004; 6.5.2, p. 52ff]

Chair of Timber Structures and Building Construction

technische Universität München

Notched Beams in Timber

6.5 Notched members

6.5.2 Bea

2 Beams with a notch at the support

where:

- *i* is the notch inclination (see Figure 6.11a);
- h is the beam depth in mm;
- *x* is the distance from line of action of the support reaction to the corner of the notch;

$$\alpha = \frac{h_{\rm ef}}{h}$$

and Building Construction

technische Universität München

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Notched Beams in Timber – Strengthening Measures

Example of reinforcement in concrete structures

Strengthening measure / reinforcement by self-tapping screws with continuous thread

Notched Beams in Timber – Strengthening Measures

Strengthening measure / reinforcement by glueing plywood / LVL to the sides of beam, glueline pressed by screws

> technische Universität München

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Cross Connections

Pictures: Prof. H. Blaß, TH Karlsruhe Chair of Timber Structures and Building Construction

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Cross Connections – Influences on load-carrying Capacity

Load-carrying capacity depends on stressed volume and stress distribution / stress peaks and is therefore influenced by:

- Ratio between distance *b_e* and beam depth *h*
- Fastener spacing in grain direction / length *a_r*
- Penetration thickness *t*

Cross Connections

8.1.4 Connection forces at an angle to the grain

(3) For softwoods, the characteristic splitting capacity for the arrangement shown in Figure 8.1 should be taken as:

$$F_{90,Rk} = 14 b w \sqrt{\frac{h_e}{\left(1 - \frac{h_e}{h}\right)}}$$
(8.4)

where:

$$w = \begin{cases} \max \begin{cases} \left(\frac{w_{pl}}{100}\right)^{0.35} & \text{for punched metal plate fasteners} \\ 1 & \text{for all other fasteners} \end{cases}$$
(8.5)

and:

 $F_{90,Rk}$ is the characteristic splitting capacity, in N;

w is a modification factor;

- $h_{\rm e}$ is the loaded edge distance to the centre of the most distant fastener or to the edge of the punched metal plate fastener, in mm;
- *h* is the timber member height, in mm;
- *b* is the member thickness, in mm;
- $w_{\rm pl}$ is the width of the punched metal plate fastener parallel to the grain, in mm.
- [EN 1995-1-1:2004; 8.1.4, p. 59ff]

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Cross Connections

8.1.4 Connection forces at an angle to the grain

[EN 1995-1-1:2004; 8.1.4, p. 59ff]

See also STEP C2 "Tension perpendicular to the grain in joints"

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

MÜNCHEN

Cross Connections – Strengthening Measures

and Building Construction

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Openings

Pictures: Prof. H. Blaß, TH Karlsruhe

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Openings

Dipl.-Ing. Philipp Dietsch

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Openings

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Openings - Constructive Measures

Place in center line of member, at distance from supports

Round openings or chamfered corners (avoid stress peaks)

Eurocodes - Background & Applications 18th – 20th of February 2008, Brussels

Openings - Strengthening Measures

Tension Perpendicular to Grain - Conclusion

- Tension perpendicular to grain strength very low
- Avoid tension perp. to grain stresses whenever possible
- Members with tension perp. to grain stresses are:
 - Double tapered, curved and pitch cambered beams
 - Notched members, members with holes or cross connctions
- Tension perp. to grain stresses also develop with changing moisture content
- Possible reinforcements are: Self-tapping screws with continuous thread, drilled or glued-in rods, plywood / LVL...
- Proposal: reinforcements should be designed to carry full tension perp. to grain stresses (cracked tension perp. to grain zone)

Literature

- Timber Engineering STEP 1, STEP 2; Centrum Hout; The Netherlands
- Erläuterungen zu DIN 1052:2004; DGFH; Germany (in German)
- CIB W18 Proceedings; TH Karlsruhe; Germany
- Design of Structural Timber to EC5; Palgrave; GB
- Structural Timber Design to Eurocode 5; Blackwell Publishing; GB