

Cost-effective fire performance

Louis-Guy Cajot ArcelorMittal Research & Development Structural Long Products Esch/Alzette GD Luxemburg

February,19th 2008

Cost-effective fire performance

> High potential of steel in multi-storey buildings

- > One of the reasons explaining the differences: Fire Safety Approach.
- > The present low market share in continental Europe is more particularly due to :
 - ⇒ Weak knowledge from engineers and architects of the actual performances of the steel in case of fire, still mainly assessed through knowledge from fire test on single element.
 - ⇒ Fire Safety Engineering not yet fully considered

Classical approach amongst "structural fire safety engineering" methods - Eurocodes 1, 3 and 4

Classical approach based on ISO-834 heating curve

Classical approach - Quick use of the Eurocodes

→ Unprotected steel structures for fire resistance ≤ 30minutes
 → R30 unprotected steel structures (Overdesign [S355,S460]; benefit of the connections)

Classical approach based on ISO-834 heating curve

Steel protection for fire resistance > 30minutes

Access Steel has found 29 Resources that match: structural fire safety engineering → protected

Additionnal cost of the protection > 40% of the finished steel cost

16-01-2008

The protection must be optimized and applied where it is really needed. 5 The performance based "structural fire safety engineering" approach according to Eurocodes 1, 3 et 4 ArcelorMittal

Fire Safety Engineering = Global Structural Behavior + Fire Development

Fire Engineering approach

Fire Engineering approach

European research in the field of the fire engineering achieved between $1994 \rightarrow 2006$ allows to finalize the following technical developments :

- Fire safety concept evaluation based on natural fire.
- Required data for the fire development calculation methods (fire load [MJ/m²], fire spread, rate of heat release [kW/m²]).
- Definition of model scenario for usual buildings (offices, schools, shops,...).
- ➡ Take into account of the active fire fighting measures (sprinkler, smoke exhaust system,...).
- ➡ Air temperature field calculation method in case of fire.
- Steel temperature calculation method.
- Simulation of the behaviour of the structure submitted to the different fire scenarii and to the static loads.
 Influence of the Actives Fire Safety Measures
- Building systems and technical solutions
 to guarantee that the structure survive
 the considered scenarii.

Fire Engineering approach

The implementation of the research results met

the following difficulties :

- Existing regulations and standards based on standard fire.
- Habits and a priori in the minds of the professionals of construction.
- Different regulations depending on the countries and even on the regions.
- → Low expertise of engineers, architects and authorities in that domain.
- Lack of training in that domain.
- No userfriendly calculation tools.

solved by :

- The natural fire was introduced in the Eurocodes, particularly Eurocode 1 Fire Part.
- The fire engineering has been dealt with in decree and regulations in different european countries.
- Userfriendly calculation tools were developed (Ozone), and put on the site www.arcelor.com/sections
- Trainings were, and are organized (DIFISEK).
- A network of competent and qualified engineering offices in the field of fire engineering was developed (SECURE with STEEL).

Ozone Natural Fire calculation according to EC1 Fire Part

📂 Strategy

(NFSC approach)	(Standard Fire Curve)	
Compartment		
Fir <u>e</u>		
Zone Temperature	<u>H</u> eating	
	Steel <u>P</u> rofile	
	Steel Temperature	Ele <u>m</u> ent
		Fire Resistance
Strategy		
Strategy		
<u>S</u> trategy P <u>a</u> rameters		
<u>S</u> trategy Pgrameters		

File Tools View Help				
Upper Layer				
Lower Layer	Transition (2 Zones to 1 Zone) Criteria			
	Upper Layer Temperature	≥ 500	°C	0
	Combustible in Upper Layer + U.L. Temperature Combustible Ignition Temperatur	≥ Combustibi e: 300	e Ignition Temperature °℃	0
	Interface Height	≤ 0,2	x Compartment Height	
	Fire Area	≥ 0,25	x Floor Area	
	Select Analysis Strategy			
	Combination (default)			
	C 2 <u>Z</u> ones			
	€ 1Z <u>o</u> ne			
			ок Сс	ancel

🔊 Ozone v2.2

File Tools View Help

□ 😅 🖬 👜 - 🛐 Name: Program Flow Chart

Ozone Natural Fire calculation according to EC1 Fire Part

Zones Interface Elevation

DIssemination of FIre Safety Engineering Knowledge DIFISEK (2006) et DIFISEK+(2008)

Treated topics

- Part 1: Thermal & Mechanical Actions
- Part 2: Thermal Response
- Part 3: Mechanical Response of Structures in Fire
- Part 4: Software for Fire Design
- Part 5-1: Worked Examples
- Part 5-2: Illustration of Completed Projects

Available tools for further dissemination

http://www.arcelormittal.com/sections/DIFISEK/DIFISEK_welcome.html

- All Presentations and Syllabus in PDF WP1 to WP5 (17 languages)
- Database for Fire Design Software (UK)

Medical Centre - Eich ; G-D Luxembourg

SECURE with STEEL in Europe 25 European engineering offices specialized in Fire Engineering assisted by 9 universities and/or research centers

ARUP, Fire University of Edinburgh (United Kingdom)
DGMR, Hamerlinck Advies bureau, Cauberg-Huygens (The Netherlands)
Swedish National Testing & Research Institute (Sweden)
Schmitt Schtumpf Fruhauf & Partner, Universität of Hannover (Germany)
Greisch, Technum, Steel Information Centre, University of Liège (Belgium)
Bernard Ingenieure (Austria)
Keonn (Poland)
Studio di Ingegneria delle Strutture (Italy)
CTU Prague (Czech Republic)
MP Ingénieurs ETH Zürich (Switzerland)
NB35, LABEIN (Spain)
Tal Projecto, Lda GIPAC, Lda University of Aveiro (Portugal)
Schroeder & Associés (Luxembourg)
Arches-Etudes, E2C Atlantique, Terrell International (France)

ACCESS STEEL CHOICE OF FIRE ENGINEERING STRATEGY

access R All Results Keywords **Client Guides** Schem Access Steel has found 14 Resources that match: stru 1 - 10 > >> Sort results by: Relevance | Title | Date Scheme Development: Overview of firesafetyst 1. 2 \odot SS020 Describes the main concepts of firesafety. Su regulatory requirements. Introduces firesafetyengine and the use of the section factor to calculate fire pro Scheme development: Selection of appropriate 2. 2 \odot SS041 This document presents guidance on the fire appropriate for single-occupancy houses. Scheme Development: Firesafetystrategy for m З. Ð 2 SS008 Outlines the principal and practical requireme Introduces fireengineering and covers passive fire pr partially protected steelwork Scheme development: Selection of appropriate 4. 2 \odot SS040 This document presents guidance on the fire appropriate for specific conditions for multi-storey off

Scheme development: Selection of appropriate fire engineering strategy for multi-storey commercial and apartment buildings

Scheme development: Selection of appropriate fire engineering strategy for multistorey commercial and apartment buildings SS040a-EN-EU

Table 2.1 Guidance on choice of design approach for a specific multi-storey building of conventional proportions, without an atrium

		Standard	fire metho	ds		Perform based m	ance ethods	
		A. Manufacturers data	B. EC4 Data for Composite construction	C. Simple calculations.	D. Advanced calculations.	E. Simple calculations.	F. Advanced calculations.	
1.	Building size- floor area per storey							This is related to potential economies
	Small, < 200 m ²	~~						which will be greater in relation to the
	Medium	~~						additional design work for larger buildings.
	Large, >2 000 m ²	~	~	~	~		~	ũ ũ
2.	Building Height							Taller buildings have
	Up to 5 storeys	~~				~		economy and longer fir
	6+ storeys	~	~	~	~		~	resistance periods
3.	Taking benefit from active fire fighting measures							Some national regulations and/or local
	Detection, alarm and smoke exhaust	Ш	Ш				~~	presence of these measures to reduce
	Sprinklers	Ш	Ш			~	~~	fire loads
4.	Benefit from structural reserve							Implicit reserves of strength, for example
	Economically sized for strength in cold design	~~					~	from semi-rigid connections, and reduced exposure to
	Significantly oversized for strength in cold design,			\$		~		fire increase the potential value of more advanced approaches
	Additional reserve available from behaviour not used for cold design, e.g. slab as membrane	Ш			~		~~	

The "structural fire safety engineering" approach Eurocodes 1, 3 et 4

Test in Cardington (UK)

Test in Cardington (UK)

- Maximum steel temperature about 1150°C
- Fire calculation by element provides a failure at 680°C
- Why did the structure survive ?

Test on single elements

Real behaviour in a building

Membrane effect

- In a building, catenary behaviour of the steel beam acting compositely with the concrete slab.
- Higher is the deflection, higher is the membrane effect.

Membrane effect highlighted by the ISO fire test of today

Fire resistance of secondary beams calculated as single elements

EC4 Fire part

Critical temperature = 608 °C

Fire resistance = 16'

SAFIR Simulation

Fire resistance = 20'

Fire Safety Concept: Protected main beams, unprotected secondary beams

The "structural fire safety engineering" approach Eurocodes 1, 3 et 4

Test on the whole floor including connections $R \ge 30$ $\blacksquare R = ?$

Example of Design Table

Span 1 = 9m ; Span 2 = 7m ; R120

Standard A-series mesh reinforcement Reinforcement strength 500 N/mm²

R 90 R 120

					Mesh	size, be for fir	am desig	gn facto ince. coi	r and add	ditional b	eam loac pan 1	i (kN) 💡		
Design Table 2		90 minutes fire resistance						120 minutes fire resistance						
Dooigin rubio L			Normal weight concrete 80 mm concrete depth		Lightweight concrete 80 mm concrete depth			Normal weight Concrete 90 mm concrete depth			Lightweight concrete 90 mm concrete depth			
Span 2 (m)	Imposed Load (kN/m ²)	Span 1 (m)	6.0	7.5	9.0	6.0	7.5	9.0	6.0	7.5	9.0	6.0	7.5	9.0
6.0	2.5 + 1.7	Mesh	A142	A193	A193	A142	A142	A193	A142	A193	A193	A142	A193	A193
		Beam	ОК	ок	ОК	OK	0.75	OK	ОК	ОК	0.99	OK	ОК	ок
		Load	1	8	15	1	6	14	2	9	17	1	8	15
	3.5 + 1.7	Mesh	A142	A193	A193	A142	A193	A193	A142	A193	A252	A142	A193	A252
		Beam	ОК	ок	0.99	ОК	OK	ОК	ок	ок	ок	ОК	ОК	ок
		Load	1	8	17	1	7	15	2	9	18	1	8	16
	5.0 + 1.7	Mesh	A142	A193	A252	A193	A193	A252	A193	A193	A252	A193	A193	A252
		Beam	0.83	OK	ОК	OK	OK	ОК	OK	0.89	ок	ОК	0.84	ок
		Load	0	9	18	1	8	17	2	10	20	2	9	18
7.5	2.5 + 1.7	Mesh	A193	A142	A193	A142	A193	A193	A193	A193	A193	A193	A193	A193
		Beam	ОК	0.80	ОК	0.79	ОК	ОК	ОК	OK	ок	ок	ок	0.98
		Load	6	14	26	4	13	23	7	17	28	6	15	25
	3.5 + 1.7	Mesh	A193	A193	A193	A193	A193	A193	A193	A193	A252	A193	A193	A252
		Beam	ОК	ОК	ОК	ОК	ОК	0.86	OK	OK	OK	OK	OK	ОК
		Load	6	16	28	5	14	24	7	18	30	6	16	27
	5.0 + 1.7	wesh	A193	A193	A252	A193	A193	A252	A193	A193	A252	A193	A252	A252
		Beam	ок	ОК	ОК	ок	ОК	ОК	0.89	0.95	OK	0.84	OK	ОК
		Load	7	18	31	6	16	28	7	20	34	6	18	31

FRACOF - Fire Resistance Assessment of partially Composite Floor

Economic fire design of steel beams in composite floor

Objective

That project will be a milestone in the strategy to develop the fire engineering. It will enable any engineers to use partially unprotected steel structure by using design tables/software approved by the Authorities.

Deliverables

There are three main deliverables for this project :

- Background Technical Report
- Design Guide
- Design Software

1. Background Technical Report

To provide in-depth information on the development and verification of the design method.

2. Design Guide

The design guide will consist of approximately 50 pages and will be based on the existing publication 'Fire Safe Design: A new approach to multi-storey steel-framed buildings'. The design guide will present the principles of the design process using this method.

3. Design Software

The design software will be made available free of charge and will be distributed via the Steel Alliance website.

Dissemination

Through Steel Alliance + IPO's in Spain, Germany, Belgium, Italy, Luxembourg and the Netherlands, + DIFISEK, + 'Secure with Steel'

TEST SET-UP

Within the framework of project FRACOF, a composite floor of about 60 m², supported by four protected boundary beams and two unprotected internal beams, subjected to standard fire exposure for 2 hours.

LOADING CONDITIONS

- Self weights of slab, steel beams, etc
- Dead load: 170 kg/m²
- Imposed load: 500 kg/m²

MESH REINFORCEMENT

TEST MONITORING

AFTER 120 MINUTES....

AFTER 120 MINUTES...

AFTER 120 MINUTES...

Fire safety engineering is aimed at adopting a rational scientific approach which ensures that fire resistance/protection is provided where it is needed rather than accepting universal provisions which may over or under estimate the level of risk.

Institution of Structural Engineers