

Connections (Part 1.1)

Brussels, 18-20 February 2008 – Dissemination of information workshop

Connections (Part 1.1) Eurocode 9: Design of aluminium structures

Prof.ir.F.Soetens

Eindhoven University of Technology, Eindhoven, TNO Built Environment and Geosciences, Delft, The Netherlands

Contents

- 1. Introduction
- 2. Joining Technology

3. Design of Joints

- Welds
- Bolts, rivets
- Adhesives
- Hybrid connections

4. Final remarks

Importance of Joining Technology

Design of aluminium structures requires knowledge of:

- Available joining techniques
- Design of connections

To arrive at optimum performance at low costs.

Joining is a key technology in aluminium structural engineering

Types of joints

Primary structures

- Welded connections
- Bolted connections
- Riveted connections
- Adhesive joints

Special joints

- Solid state welding
- Joints with cast parts
- Snap joints, rolled joints etc.

Joints in Thin-walled Structures

- Thread forming and self-drilling screws
- Blind rivets
- Cartridge fired pin
- Spot welding

Advantage of welded connection

- Saving work and material
- Absence of drilling
- Tight joints
- No crevice corrosion
- Joint preparation by extrusion

 Groove preparation, backing and support

 Local increase of thickness in strength reduction Zone

Difference in thickness

Distance to corners

ť

Requirements of joints

• Structural requirements

- Strength
- Stiffness
- Deformation capacity

Non-structural requirements

- Economic aspects
- Durability
- Tightness
- Aesthetics

Principles of design

where

- F_{Ek} = force in connection caused by characteristic load
- F_{Rk} = characteristic strength of connection
- γ_f = appropriate load factor
 - = appropriate material factors
- 'n

Strength, stiffness and deformation capacity

Strength:

- Analytical determination
- Determination by tests

• Stiffness:

- Influence on entire structure
- Influence on force distribution in connections
- Distribution of loads
- Deformation capacity:
 - Prevention of brittle fracture
 - Redistribution of stresses

Welding

- Gas welding
- Metal arc welding
- TIG
- MIG

Electric resistance welding

- Spot welding
- Seam welding
- Solid state welding
 - Ultrasonic welding
 - Electron beam welding
 - Friction welding

Friction stir welding

Screws, bolts and rivets

- Aluminium
- Steel
- Thread inserts

Joining technology

14

Brussels, 18-20 February 2008 – Dissemination of information workshop

Thread inserts

Ensat

Brussels, 18-20 February 2008 – Dissemination of information workshop

Solid Rivets

Brussels, 18-20 February 2008 – Dissemination of information workshop

Special joints

Profile to profile joints

Groove and tongue

Hooked connection

Resistance spot welding

Advantages

- Fast, automatic
- Small distortion
- Excellent weld strength

Limitations

- Only lap joints
- Max. 3.2 mm thickness
- Access to both sides required
- Expensive equipment

Thread forming and selfdrilling screws

Thread forming screw

Self drilling and thread forming

Self drilling and thread forming

Adhesive bonding

Advantages

- Microstructure unaffected
- Joining of different materials
- Joining of very thin parts
- High fatigue strength
- Good vibration damping

Disadvantages

- Low strength
- Pretreatment of surfaces
- Ageing
- Tolerance of process parameters

Structure of adhesive joint

- 1. Strength parent material
- 2. Adhesive strength oxide layer
 - Strength oxide layer
 - Adhesive strength between oxide layer and interface
 - Adhesive strength between interface and adhesive
 - Cohesion strength of adhesive

Joining technology

21

Brussels, 18-20 February 2008 - Dissemination of information workshop

Failure of adhesive joints

Adhesion failure

Cohesion failure

Mixed failure

Brussels, 18-20 February 2008 – Dissemination of information workshop

Properties of adhesives

Adhesive base	Temperature Range °C
One-component epoxy	110-130
Two-component epoxy	60-90
Phenolic adhesive	80-120
Methylacrylate	80-100
Polyurethane	80-100
Polyamide	120-140
Silicone	180-190

Design of adhesive metal joints

Tension

Peeling

Torsion

Tensile - Shear

Brussels, 18-20 February 2008 – Dissemination of information workshop

Welded connections

Design of welded joints

- Strength of the welds
- Strength of the HAZ

Design guidance applicable for

- Welding process MIG or TIG (up to t = 6 mm)
- Approved welder and welding procedure
- Prescribed combinations of parent and filler metal
- Statically loaded structures

• Above conditions not fulfilled

- Primary structures \rightarrow testing
- Secondary structures or non loaded members $\rightarrow \gamma_{Mw} = 1,6$

Heat-affected zone (HAZ)

Heat-treatable alloys
 Condition T4 or higher
 (6xxx and 7xxx series)

Brussels, 18-20 February 2008 – Dissemination of information workshop

 Non-heat treatable alloys in work-hardened cond. (3xxx and 5xxx series)

TIG welding more severe than MIG welding

HAZ softening factor ρ_{HAZ}

Alloy series	Condition	ρ_{HAZ} (MIG)	$ ho_{HAZ}$ (TIG)
6xxx	T4	1,0	1,0
	T5	0,65	0,60
	T 6	0,65	0,50
7xxx	T4	0,90	0,70
	T 6	0,80	0,60
5xxx	H22	0,86	0,86
	H24	0,80	0,80
Зххх	H14, H16, H18	0,60	0,60

Extent of HAZ (b_{HAZ})

<i>b_{HAZ}</i> (mm)	MIG	TIG
0 < <i>t</i> ≤ 6 mm	20	30
6 < <i>t</i> ≤ 12 mm	30	-
12 < <i>t</i> ≤ 25 mm	35	-
<i>t</i> > 25 mm	40	-

Characteristic strength weld metal (*f*_w)

- Lower than parent metal strength
- Depending on filler metal used (appropriate 5xxx or 4xxx series)

Characteristic strength values weld metal *f_w* [N/mm²]

Fillor	Parent metal							
metal	3003 H12	5083 O	5454 H24	6060 T5	6005 T6	6061 T6	6082 T6	7020 T6
5356	-	240	220	160	160	190	210	260
4043	95	-	-	150	150	170	190	210

Design of butt welds

- Strength members \rightarrow full penetration butt welds
- Throat thickness equal to thickness t
- Effective length equals total weld length when run-on and runoff plates are used

Design stresses

• Normal stress, perpendicular to weld axis

$$\sigma \leq \frac{f_w}{\gamma_{Mw}}$$

Design of joints

• Shear stress

$$au \leq 0,6rac{f_w}{\gamma_{Mw}}$$

Normal + shear stress

$$\sqrt{\sigma^2 + 3\tau^2} \leq \frac{f_w}{\gamma_{Mw}}$$

Design of fillet welds

- Strength of fillet welds
 - Throat section
 - Forces acting on throat section
 - Throat section
 - Effective throat thickness a
 - Effective length
 - Longitudinal fillet weld
 - Length > 100 a
 - Non uniform stresses

Reduction of

weld length

Effective throat thickness

With positive root penetration: $a = 1,2 a \text{ or } a + 2 \text{ mm or } a = a + a_{pen}$ (verified by testing)

Forces acting on a fillet weld

Stresses $\sigma_{\!\!\perp}, \tau_{\!\!\perp}$ and $\tau_{''}$, acting on the throat section of a fillet weld

Design of joints

Brussels, 18-20 February 2008 – Dissemination of information workshop

Design strength fillet weld

• Stresses \rightarrow comparison stress σ_c :

$$\sigma_{c} = \sqrt{\sigma_{\perp}^{2} + 3(\tau_{\perp}^{2} + \tau_{\parallel}^{2})}$$

Design stresses:

$$\sigma_{C} \leq \frac{f_{w}}{\gamma_{Mw}}$$

Design strength HAZ

- Tensile force perpendicular to failure plane
- HAZ butt welds

Brussels, 18-20 February 2008 – Dissemination of information workshop

 $\sigma \leq rac{f_{a,HAZ}}{\gamma_{MW}}$

(Full penetration butt welds)

$$\sigma \leq \frac{f_{a, \text{HAZ}} \cdot t_e}{\gamma_{\text{MW}} \cdot t}$$

(Partial penetration butt welds)

*t*_e = effective throat thickness *f*_{*a*,HAZ} = Characteristic strength HAZ

HAZ fillet welds

(Toe of the weld, full cross-section)

(At the fusion boundary)

For shear forces and combined tensile / shear forces similar rules apply

Design of connections with combined welds

Two approaches

- 1. Welds designed for stresses in parent metal of the different parts of the joint \rightarrow Linear Elastic Approach
- 2. Loads acting on joint are distributed to the welds that are most suited to carry them \rightarrow Plastic Approach

Bolted and riveted connections

End distance e₁: min. 1,2 *d*

Edge distance e_2 : max. 4 t + 40 mm \rightarrow corrosion environment 12 t + 150 mm \rightarrow no corrosion

Spacing p_1 : min. 2,2 dSpacing p_2 : min. 2,4 d max. 14 t or 200 mm

Categories of bolted connections

Shear connections

- Category A: Bearing type
 - Shear resistance
 - Bearing resistance
- Category B: Slip-resistant at serviceability limit state
 - Add. check at ult. limit state: shear and bearing
- Category C: Slip-resistant at ultimate limit state
 - Add. check: shear and bearing

Tension connections

- Category D: non-preloaded bolts
 - Tension resistance
- Category E: Preloaded high strength bolts
 - Tension resistance

Design resistance of bolts

Shear resistance per shear plane:

Strength grades lower than 10.9

Strength grade 10.9, stainless steel bolts, aluminium bolts

Bearing resistance

$$F_{b,Rd} = \frac{2.5\alpha f_u dt}{\gamma_{Mb}} \qquad \alpha \text{ smallest of: } \frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u} \text{ or } 1,0$$

Tension resistance

$$F_{t,Rd} = \frac{0.9f_{ub}A_s}{\gamma_{Mb}}$$

Distribution of forces between fasteners

(a) Elastic load distribution Distribution proportional to distance from centre of rotation

$$F_{\rm v,Ed} = \sqrt{\left(\frac{M_{\rm Ed}}{5p}\right)^2 + \left(\frac{V_{\rm Ed}}{5}\right)^2}$$

(b) Plastic load distribution Possible plastic distribution with one fastener resisting V_{Ed} and four resisting M_{Ed}

$$F_{\rm v,Ed} = \frac{M_{\rm Ed}}{6p}$$

Brussels, 18-20 February 2008 – Dissemination of information workshop

Deductions for fastener holes

For compression members: no deductions for fastener holes

High strength bolts in slipresistant connections

Preloaded bolts Surface treatments

force transfer by friction between clamped surfaces friction grip or slip-resistant connections

Design slip resistance:

 $\begin{array}{l} n = \text{number of friction surfaces} \\ m = \text{factor; } m = 1,0 \text{ for nominal clearance holes} \\ \mu = \text{slip factor; } \mu = 0,27 \text{ up to } 0,40 \rightarrow \Sigma t \\ \gamma_{\text{Ms}} = 1,25 \text{ for ultimate limit state} \\ 1,10 \text{ for serviceability limit state} \end{array}$

 $F_{p,cd} = 0.7 f_{ub} A_s$

Controlled tightening

Design of adhesive lap joints

Adhesive bonded joints

- **Design guidance applicable for:**
 - Shear forces
 - Appropriate adhesives
 - Specified surface preparation

Structural application: characteristic shear strength values f_{vADH} :

Adhesive types	f _{vADH} [N/mm ²]
1-component epoxy	35
2-component epoxy	25
2-component acrylic	20

Higher values are allowed when demonstrated by tests

Design shear stress: $\sigma = \frac{f_{v,ADH}}{\sigma}$ $\gamma_{M,adh}$

where: YM

$$_{,adh} = 3,0$$

Hybrid connections

Brussels, 18-20 February 2008 – Dissemination of information workshop

- Different fasteners combined such as bolts and welds
- Unequal stiffness of different fasteners:
 - Only higher stiffness fastener is acting
 - Only design strength of stiffest fastener is taken into account
- When fasteners act at the same time: design strengths may be summarised

Final remarks

Brussels, 18-20 February 2008 – Dissemination of information workshop

- Research resulted in up-to-date design rules
- Design rules available for structural connections
 - welds
 - bolts and rivets
 - adhesives
- EC9 important design tool for aluminium structures