
CALCULATION SHEET	Document Ref:	SX016a-EN-EU	Sheet	1	of	8
	Title	Example: Determination	on of load	ls on a	a build	ling envelope
access						
SCEEL	Eurocode Ref	EN 1991-1-3, EN 1991-	-1-4			
Eurocodes made easy	Made by	Matthias Oppe		Date		June 2005
	Checked by	Christian Müller		Date		June 2005

Example: Determination of loads on a building envelope

This worked example explains the procedure of determination of loads on a portal frame building. Two types of actions are considered: wind actions and snow actions.

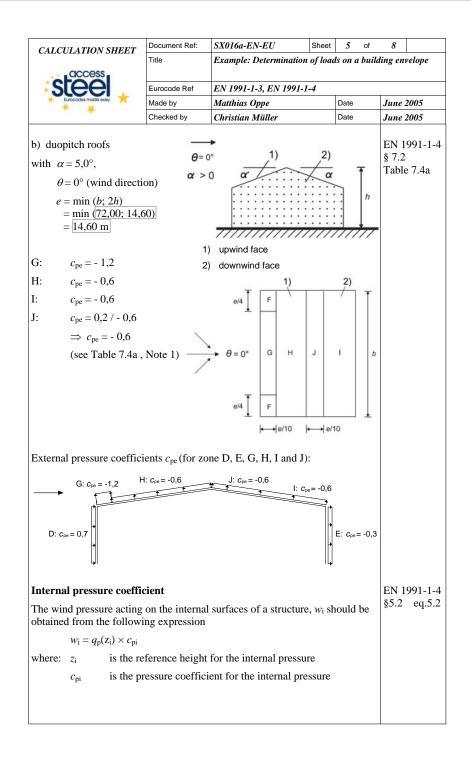
Basic data

- Total length : b = 72,00 m
- Spacing: s = 7,20 m
- Bay width : d = 30,00 m
- Height (max): h = 7,30 m
- Roof slope: $\alpha = 5,0^{\circ}$

Height above ground:

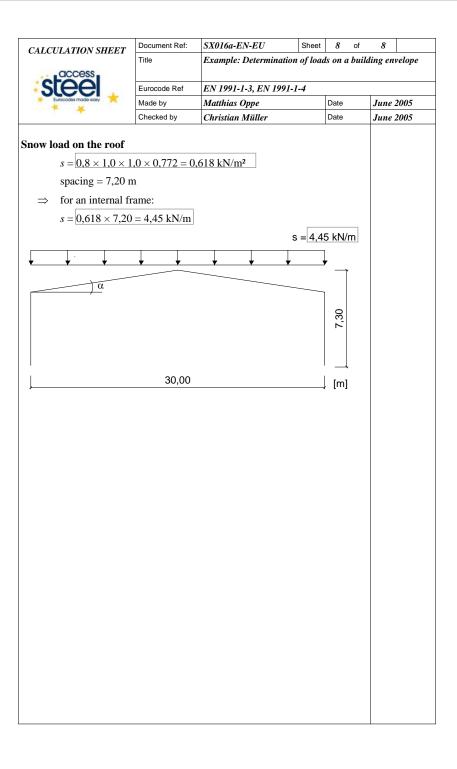
h = 7,30 m

 $\alpha = 5^{\circ}$


leads to:

 $h' = 7,30 - 15 \tan 5^\circ = 5,988 \text{ m}$

		Document Ref:	SX016a-EN-EU	Sheet 2 of	8
CALCU	LATION SHEET	Title	Example: Determination		
	access			., on a bu	
S	eel	Eurocode Ref	EN 1991-1-3, EN 1991-1	-4	
+ Eur	ocodes made easy	Made by	Matthias Oppe	Date	June 2005
		Checked by	Christian Müller	Date	June 2005
1 Wii Basic va	nd loads				
Determir	nation of basic w	ind velocity:			
		$c_{\rm season} \times v_{\rm b,0}$			EN 1991-1-4
Where:		vind velocity			§ 4.2
		•			
	un	onal factor			
	- Seuson	al factor			
	v _{b,0} fundam	ental value of	the basic wind velocity		
E l		1		•	
		_	locity (see European w	mamap):	
	$v_{b,0} = 26 \text{ m/}$	/s (for Aacher	n - Germany)		
Terrain c	ategory II =	\Rightarrow $z_0 = 0.05$ r	n		EN 1991-1-4
		$z > z_{\min}$			§ 4.3.2 Table 4.1
					1 4010 7.1
\Rightarrow	$v_{\rm b} = c_{\rm dir} \times c_{\rm season}$	$\times v_{b,0} = 26 \text{ m/s}$			
			c_{dir} and the seasonal fa	ctor Casson are	
	al equal to 1,0.		-un and the boubonal fu	escason are	
-	_				
Basic ve	locity pressure				
	$q_{\rm b} = \frac{1}{2} \times \rho_{\rm air} \times v$	2			EN 1991-1-4
	$q_b = 2^{\gamma_{bir} \times V}$	b			§ 4.5 eq. 4.10
where:	$\rho_{\rm air}$ = 1,25 kg/m	³ (air density)			cq. 4.10
\Rightarrow	$q_{\rm b} = \frac{1}{2} \times 1,25 \times 2$	$26^{2} = 422,5 \text{ N/}$	m ²		
D 1					
Peak pre	essure				
	$q_{\rm p}(z) = [1 + 7l_{\rm v}(z)]$	z)] $\times \frac{1}{2} \times \rho \times v_{m}$	$(z)^2$		EN 1991-1-4
		- 2			§ 4.5, eq. 4.8
Calculati	ion of $v_{\rm m}(z)$				
	$v_{\rm m}(z)$ mean w	vind velocity			
	$v_{\rm m}(z) = c_{\rm r}(z) \times c_{\rm r}$	$v_{\rm o}(z) \times v_{\rm b}$			


CALCU	LATION	SHEET	Document Ref:	SX016a-EN-EU	Sheet	3	of a	8	
	000000		Title	Example: Determination	of load	ls on a	building	envelop	1e
S	Tee		Eurocode Ref	EN 1991-1-3, EN 1991-1	-4				
*	urocodes made ed	By 📩	Made by	Matthias Oppe		Date	Ju	ne 2005	
	+		Checked by	Christian Müller		Date	Ju	ne 2005	
Where: Where:	$c_{\rm r}(z) =$ $c_{\rm r}(z) =$	is the roc $k_{\rm T} \times \ln\left(\frac{1}{z_{\rm min}}\right)$ is the roc is the te calculat	rography factor pughness factor $\left(\frac{z}{z_0}\right)$ for z_{mi} for $z \le z_n$ pughness length rrain factor, defined using $19 \times \left(\frac{z_0}{z_{0,\Pi}}\right)^{0,07}$	$r_n \le z \le z_{max}$ min	ness le	ngth z	0		
	Z _{min} Z _{max}	Where: is the m	(0,11)				§4	N 1991 .3.2 ible 4.1	
Calcula	tion of l_v	(z)							
	$l_{\rm v}({\rm z})$	turbuler	nce intensity						
		$l_{\rm v} = \frac{1}{c_{\rm o}}$ $l_{\rm v} = l_{\rm v}$		for $z_{\min} \le z \le z_{\min}$ for $z < z_{\min}$	ax			N 1991 4.4 eq.	
Where:	k_{I}	is the tu	rbulence facto	r recommended value	for $k_{\rm I}$ i	s 1,0			
	z	= 7,30 r							
so:	z _{min} < z								
		-	$\frac{7k_1}{(z) \times \ln(z/z_0)} \bigg],$	$\frac{1}{2} \times \rho \times v_{b}^{2} \times \frac{(k_{T} \times \ln(t_{T}))}{(k_{T} \times k_{T} \times k_{T})} \times \frac{(k_{T} \times \ln(t_{T}))}{(k_{T} \times k_{T} \times k_{T})}$	z / z ₀)) ofile				

CALCULATION SHE	ET Document Ref:	SX016a-EN-EU	Sheet	4	of	8	
_ CCCess	Title	Example: Determination	n of load	ls on a	build	ling env	velope
steel	Eurocode Ref	EN 1991-1-3, EN 1991-	1-4				
+ Eurocodes made easy	Made by	Matthias Oppe		Date		June 2	2005
1997 - 199 7 - 1997	Checked by	Christian Müller		Date		June 2	
	I						
	$\left[1 + \frac{7}{\ln(7,30/0,05)}\right] \\ < \left(0,19 \times \left(\frac{0,05}{0,05}\right)^{0,07}\right)$						
	_) ×422,5×0,947 ² ×10 ⁻³	= 0,91	l kN/	m²		
Wind pressure on su							991-1-4
(pressure coefficient	s for internal fra	<u>me)</u>				§ 7.2	
1 1	he surface. This de	e whereas a negative w finition applies for the ction.			nd		
External pressure co	oefficients						
The wind pressure ac the following express		ll surfaces, w _e should l	be obta	ined f	rom	EN 1	991-1-4
$w_{\rm e} = q_{\rm p}(z_{\rm e}) \times$	Cne						eq. 5.1
		for the external press	ure			30	- 1
$c_{\rm pe}$ is the dep $= c_{\rm p}$	ne pressure coeffic ending on the size	ient for the external press of the loaded area A. baded area A for the str	essure	is lar	ger		
a) vertical walls		, d				EN 1	991-1-4
for $\frac{h}{d} = \frac{7.30}{30,00} = 0.24$ D: $c_{pe} = 0.7$ E: $c_{pe} = -0.3$	≤ 0,25				Î	§ 7.2 Table	
				E	Þ		

	Document Ref:	SVOIC EN EU	Sheet	-	of	P]
CALCULATION SHEET		SX016a-EN-EU		6	of	8 Iina am	alona
- access -	Title	Example: Determination	i oj ioad	is on a	ouua	ung env	etope
stee	Eurocode Ref	EN 1991-1-3, EN 1991-1	-4				
Eurocodes made easy	Made by	Matthias Oppe		Date		June 2	2005
	Checked by	Christian Müller		Date		June 2	2005
The internal pressure coe openings in the building of Within this example it is opening ratio of the build + 0,2 and – 0,3. In this ca Wind loads The wind loadings per ur calculated using the influ $w = (c_{pe} + c_{pi}) \times$ Internal and external press worst combination of ext every combination of post Characteristic values for - zones D, E, G, H, I and G: $w = 9,18$	Made by Checked by Checked by fficient dependence envelope. not possible to ling. So c_{pi} sho sse c_{pi} is unfavoration hit length w (in ence width (sp $q_p \times s$ ssures are cons ernal and inter ssible openings wind loading i	Matthias Oppe Christian Müller ds on the size and distributed de estimate the permeabined puld be taken as the motion orable when c_{pi} is taken kN/m) for an internal facing) $s = 7,20$ m: idered to act at the same nal pressures are to be s and other leakage path	bution lity an re oner 1 to + (frame = consid ns.	Date of th d ous c),2. are . The ered	of	June 2 EN 1 § 7.2. Note	991-1-4 9 (6) 2 991-1-4
D: w = 4,59		E	: w=3,		<u> </u>		

CALCULATION SHEET Title Title Eurocode Ref Made by Checked b	EN 1991-1-3, EN Matthias Oppe Christian Müller termined as follows befficient fficient, usually tak ficient, set to 1,0 for value of ground sr adjustment of the g	Date Date Date S: S: S: Seen as 1,0 For normal situation now load for the ground snow load	e June June EN 1 \$5.2. ons d to a and	2005 2005 1991-1-3 .2 eq.5.1
Made by Checked by Adde by Checked by	Matthias Oppe Christian Müller termined as follows befficient fficient, usually tak ficient, set to 1,0 for c value of ground sr adjustment of the grount effects caused	Date Date Date S: S: S: Seen as 1,0 For normal situation now load for the ground snow load	e June EN 1 §5.2 ons d to a and EN 1	2005 1991-1-3 .2 eq.5.1
Checked by 2 Snow loads General Snow loads on the roof should be det $s = \mu_i \times c_e \times c_z \times s_k$ where: μ_i is the roof shape co c_e is the exposure coe c_t is the thermal coeff s_k is the characteristic relevant altitude Roof shape coefficient Shape coefficients are needed for an snow load on the roof taking into acc drifted snow load arrangements. The roof shape coefficient depends of	Christian Müller Christian Müller termined as follows pefficient fficient, usually tak ficient, set to 1,0 for value of ground sr adjustment of the g	r Date s: ken as 1,0 or normal situatio now load for the ground snow load	e June EN 1 §5.2 ons d to a and EN 1	2005 1991-1-3 .2 eq.5.1
2 Snow loads <u>General</u> Snow loads on the roof should be det $s = \mu_i \times c_e \times c_z \times s_k$ where: μ_i is the roof shape co c_e is the exposure coe c_t is the thermal coeff s_k is the characteristic relevant altitude Roof shape coefficient Shape coefficients are needed for an snow load on the roof taking into acc drifted snow load arrangements. The roof shape coefficient depends of	termined as follows befficient fficient, usually tak ficient, set to 1,0 for value of ground sr adjustment of the g count effects caused	s: ken as 1,0 or normal situatio now load for the ground snow load	EN 1 §5.2. ons d to a and EN 1	1991-1-3 .2 eq.5.1 1991-1-3
GeneralSnow loads on the roof should be det $s = \mu_i \times c_e \times c_z \times s_k$ where: μ_i is the roof shape co c_e is the exposure coe c_t is the thermal coeff s_k is the characteristicrelevant altitudeRoof shape coefficientShape coefficients are needed for ansnow load on the roof taking into accdrifted snow load arrangements.The roof shape coefficient depends of	pefficient fficient, usually tak ficient, set to 1,0 for value of ground sr adjustment of the g count effects caused	ken as 1,0 or normal situatio now load for the ground snow load	s5.2. ons d to a and EN 1	.2 eq.5.1 1991-1-3
relevant altitude Roof shape coefficient Shape coefficients are needed for an snow load on the roof taking into acc drifted snow load arrangements. The roof shape coefficient depends o	adjustment of the g count effects caused	ground snow load	and EN 1	
Shape coefficients are needed for an now load on the roof taking into acc lrifted snow load arrangements. The roof shape coefficient depends o	count effects caused		and EN 1	
snow load on the roof taking into acc drifted snow load arrangements. The roof shape coefficient depends o	count effects caused		and EN 1	
Snow load on the ground			Tabl	e 5.1
The characteristic value depends on t	the climatic region			
For a site in Aachen (Germany) the f	Ū.			
$s_{\rm k} = (0,264 \times 2 - 0,002) \times \left[1\right]$			Anne	1991-1-3 ex C e C1
Where: z is the zone number level), here $z = 2$	(depending on the	snow load on se	a	
<i>A</i> is the altitude abov	e sea level, here A	= 175 m		
$s_{k} = (0,264 \times 2 - 0,002) \times \left[1\right]$	$+\left(\frac{175}{256}\right)^2 = 0,772$	2 kN/m²		

