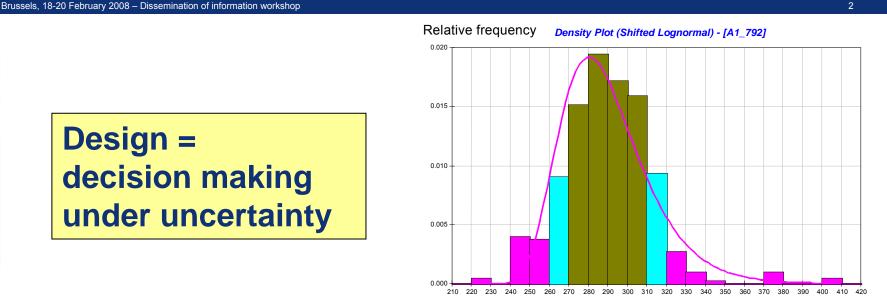


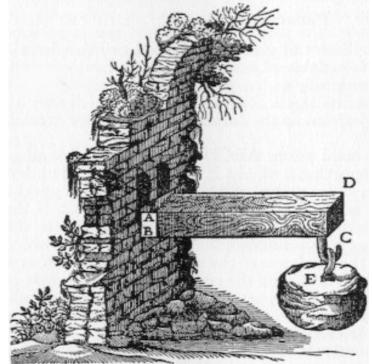
Brussels, 18-20 February 2008 – Dissemination of information workshop


EN1990 Basis of Structural Design

Annex B Reliability Differentiation Annex C Reliability Theory

Ton Vrouwenvelder TNO / TU Delft

Design =


Yield strength [MPa]

- randomness natural variability
- statistical uncertainties lack of data
- model uncertainties simplified models
- vagueness imprecision in definitions
- gross errors human factors
- ignorance lack of knowledge

To get a grip:

Mechanical models
Statistical models
Engineering judgement
Robustness
Quality Control

EN 1990: Annexes B / C (Informatieve)

Consequences classes

Differentiation of beta values and partial factors

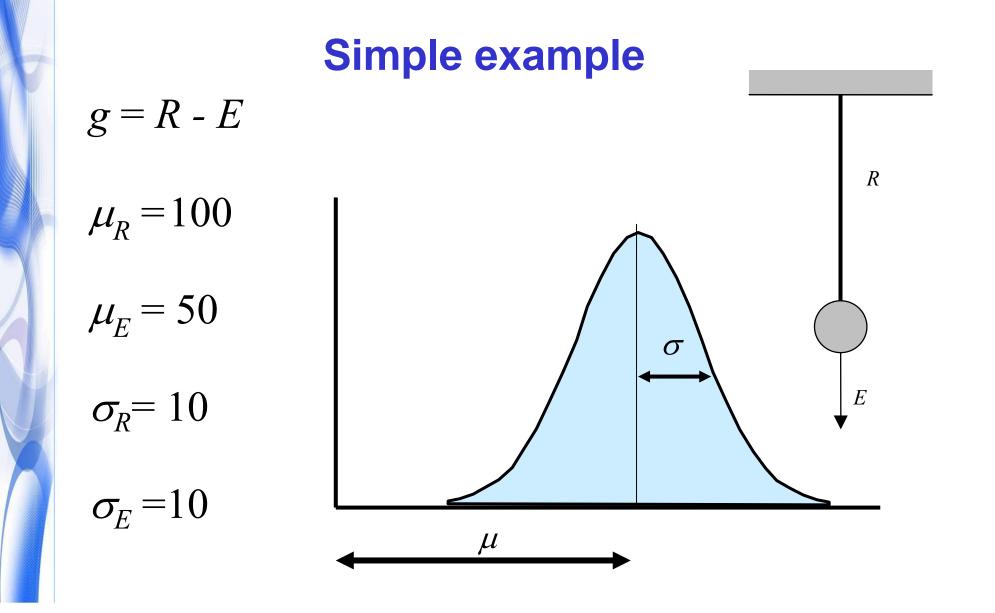
Background for Partial Factor design

Background for Probabilistic design

EN 1990 Main Text:3.5 (5) As an alternative, a design directly based on probabilistic methods may be used.

Reliability calculation
$$P_{f} = P(R < E) = \iint_{R < E} \phi_{R}(r)\phi_{E}(e)drde$$

5



JCSS Probabilistic Model Code

Part 1 Basis of DesignPart 2 Modeling of loadsPart 3 Modeling of structural properties

http://www.jcss.ethz.ch/ select "publications" select "jcss model code" 6

$$g = R - E$$

$$\mu_g = \mu_R - \mu_E = 100 - 50 = 50$$

$$\sigma_g^2 = \sigma_R^2 + \sigma_E^2 = 14^2$$

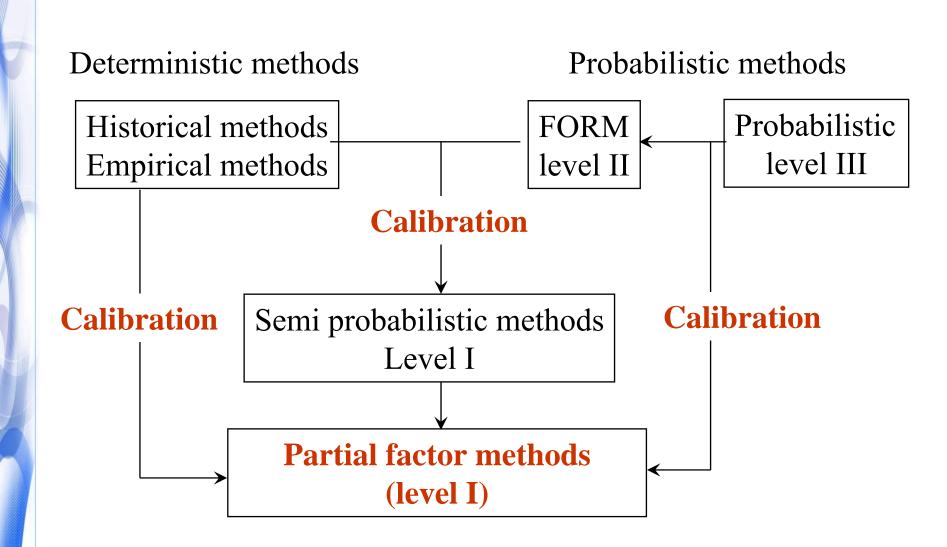
$$\beta = \mu_g / \sigma_g = 3.54$$

8

 $P_{\rm f} = P(Z < 0) = \Phi_Z(0) = 0.0002$

Reliability index β

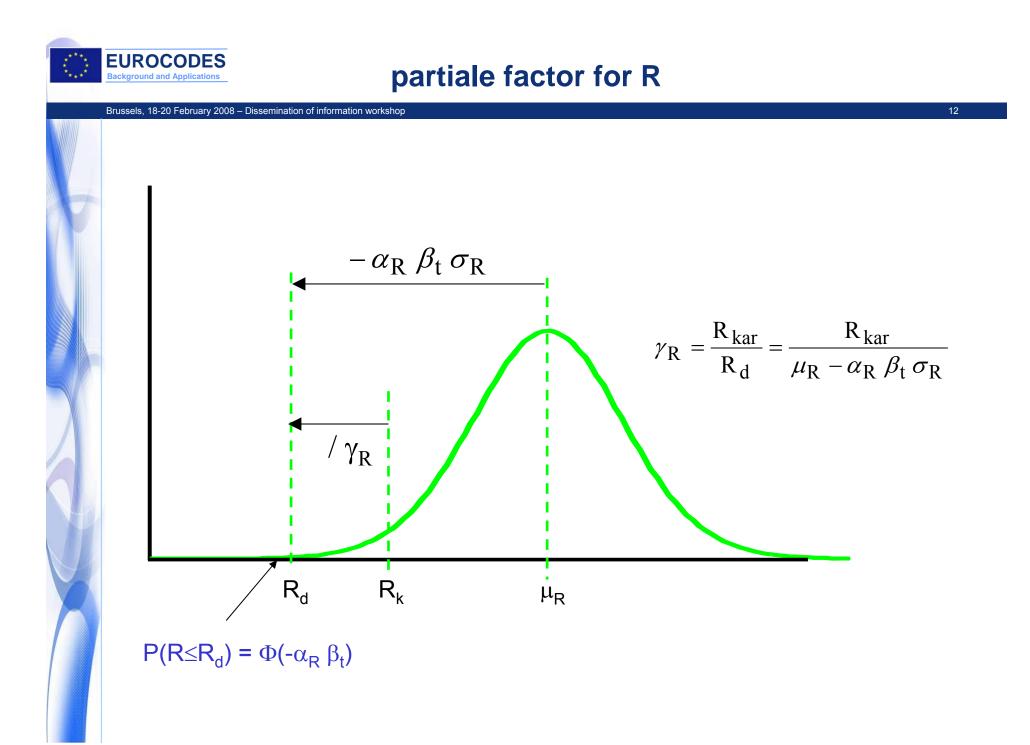
•		2.3				
$P(F)=\Phi(-\beta)$	10⁻¹	10⁻²	10⁻³	10 ⁻⁴	10⁻⁵	10⁻⁶

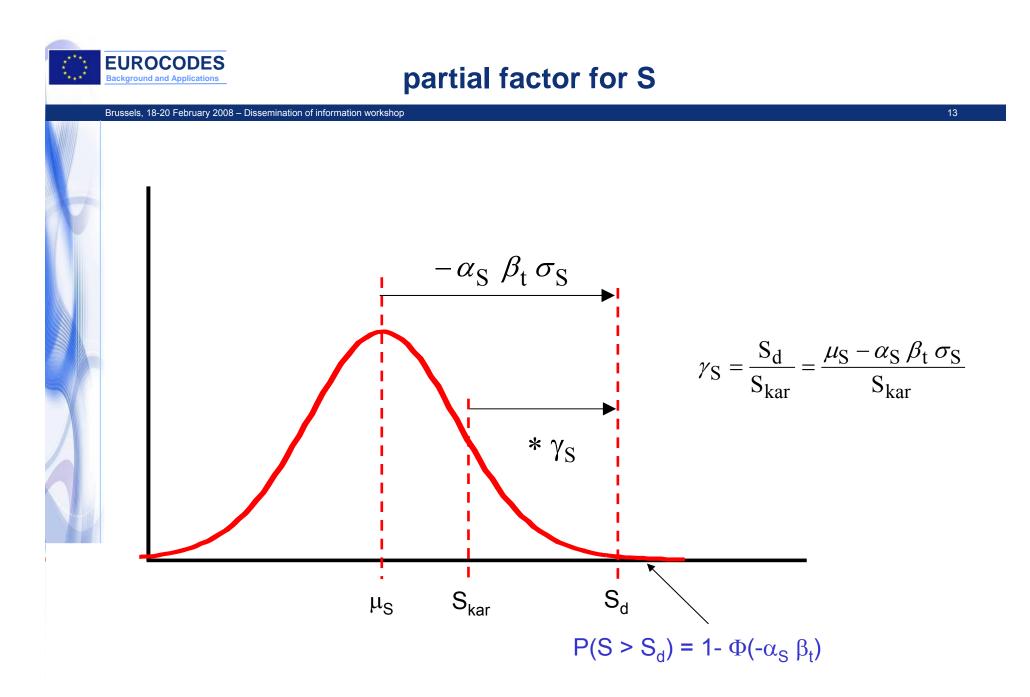

9

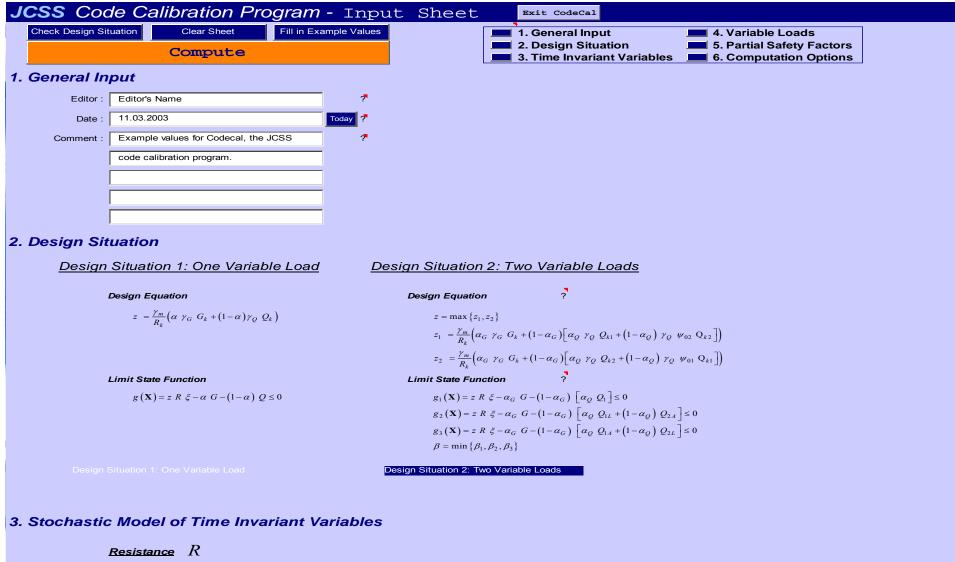
Probability of Failure = $\Phi(-\beta) \approx 10^{-\beta}$

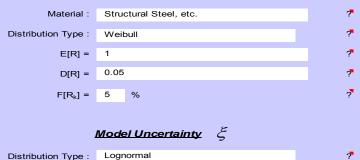
Brussels, 18-20 February 2008 - Dissemination of information workshop

10

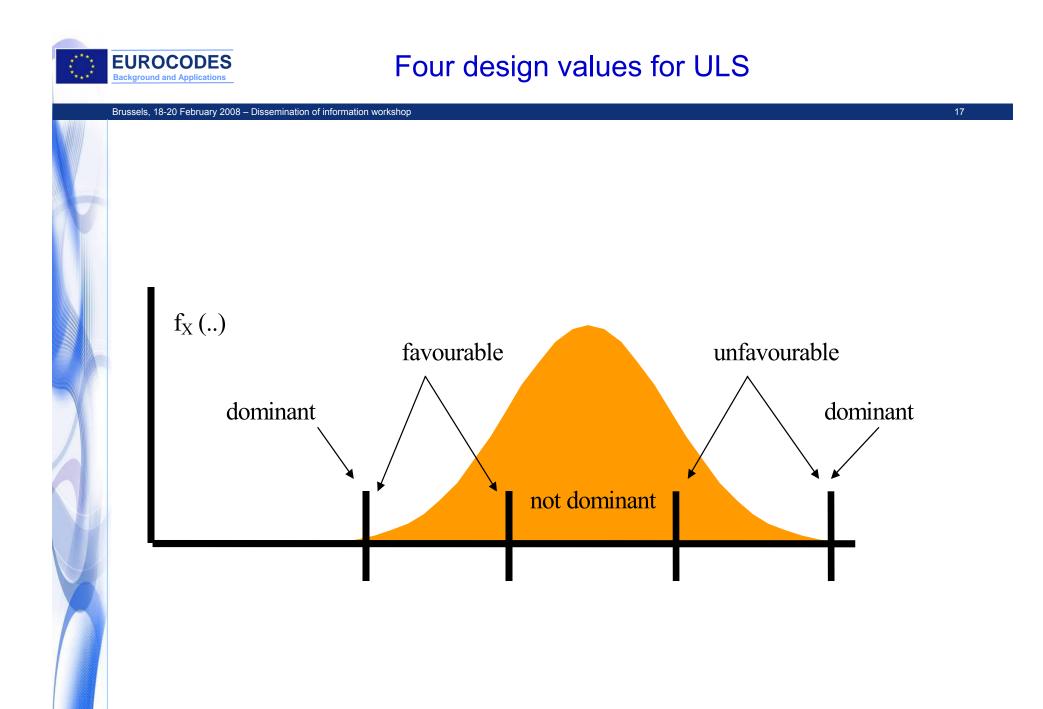

Format Partiel Factor Design


Brussels, 18-20 February 2008 - Dissemination of information workshop


 $E_d < R_d$


 $E_d = E(\gamma_G G_k, \gamma_O Q_k)$

 $R_d = R_k / \gamma_M$


ISO 2394 STANDARD ALFA-values

	load	resistance
Dominant Variable	α = - 0.70	α = 0.80
Other variables	α = - 0.28	α = 0.32

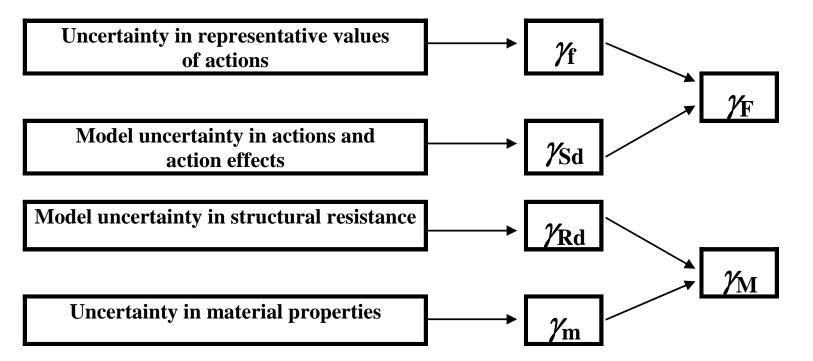


Table 2 : Target reliability index β for Class RC 2 structuralmembers

Limit state	Target reliability index				
	1 year	50 year			
Ultimate	4,7	3,8			
Fatigue		1,5 to 3,8 $^{2)}$			
Serviceability (irreversible)	2,9	1,5			
¹⁾ See Annex B					
²⁾ Depends on degree of inspectability, reparability and					
damage tolerance.					

Figure 3 : Relation between individual partial factors

Permant loads

Brussels, 18-20 February 2008 – Dissemination of information workshop

 $G_{d} = \mu_{G} (1 - \alpha_{E} \beta V_{G})$ $G_{k} = \mu_{G}$

$$\mu_{G} = \text{mean value}$$
 $V_{G} = \sigma_{G} / \mu_{G}$
 $\alpha_{E} = \text{FORM factor}$
 $\beta = \text{reliability index}$

unfavorable	dominant	θ_d/θ_{nom}	$\alpha_{\rm E}$	$\gamma_{\rm G}~({\rm V}_{\rm G}=0.10)$
yes	yes	1.05	-0.70	(1.05)(1+3.8*0.70*0.10) = 1.33
yes	no	1.05	-0.28	(1.05)(1+3.8*0.28*0.10) = 1.16
no	no	1.00	+0.32	1-3.8*0.32*0.10 = 0.88
no	yes	1.00	+0.80	1-3.8*0.80*0.10 = 0.70

In EN 1990 one finds: 1.35, $1.35\xi = 1.15$, 1.00 and 1.00.

Variable loads

$$Q_{d} = \mu_{G} (1 - \alpha_{E} \beta V_{Q})$$
$$Q_{k} = \mu_{G}$$

$$\beta = 3.8$$

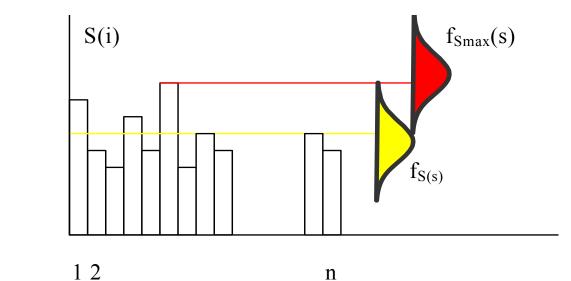
$$\theta_d / \theta_{nom} = 1.05$$

$$\alpha_E = -0.7 \text{ (dominant)}$$

$$\alpha_E = -0.7 \times 0.4 \text{ (combination)}$$

unfavorable	dominant	θ_d/θ_{nom}	$\alpha_{\rm E}$	$\gamma_{\rm Q}~({\rm V}_{\rm Q}=0.2)$
yes	yes	1.05	-0.70	(1.05)(1+3.8*0.70*0.20) = 1.61
yes	no	1.05	-0.28	(1.05)(1+3.8*0.28*0.20) = 1.27

In EN 1990 one finds 1.5. $\Psi_0 = 1,27/1,61 = 0,8.$


Variable load / Gumbel distribution

load	$V_Q (T = 50 \text{ jaar})$	γ _Q
wind	0.20	2.04
snow (land climate)	0.15	1.77
snow (sea climate)	0.30	2.67
Floor load (20 m ²)	0.30	1.50

So maybe beta = 3.8 is not really true.

Stochastic variable load Model

N independent loads of duration Δt :

 $F_{Smax}(s) = \{F_{Si}(s)\}^{N}$

Variable loads / PSI values

Theory					
dominant	ψ _{o,eg}	Ψo,floor	Ψo,snow	Ψo,wind	Ψ _{0,acc}
permanent	-	0.55	0.60	0.68	0
floor	0.87	-	0.40	0.51	0
snow	0.87	0.34	-	0.31	0
wind	0.87	0.34	0.15	-	0
accidental	0.87	0.34	0.15	0.04	-

EN 1990

dominant	Ψ _{0,eg}	Ψo,vloerr	Ψ _{0,sneeuw}	Ψ _{0,wind}	Ψo,bb
permanent	-	0.7	0.7	0.6	0
floor	ξ=0.85-1.0	-	0.7	0.6	0
snow	$\xi = 0.85 - 1.0$	0.7	-	0.6	0
wind	ξ=0.85-1.0	0.7	0.7	-	0
accidental	0.74**	0.33*	0.13*	0.33*	-

- *
- corresponding with ψ_1/γ_Q
- corresponding wiht $1/\gamma_G = 1/1.35$

Brussels, 18-20 February 2008 – Dissemination of information workshop

Annex B Management of Structural Reliability for Construction Works (Informative)

Reliability differentiation Design supervision differentiation Inspection during execution

Table 1: Definition of consequences classes

Consequences	Description	Examples of buildings and civil
Class		engineering works
CC3	High consequence for loss of	Grandstands, public buildings where
	human life, or economic, social	consequences of failure are high
	or environmental consequences	
	very great	
CC2	Medium consequence for loss of	Residential and office buildings,
	human life, economic, social or	public buildings where consequences
	environmental consequences of failure are medium	
	considerable	
CC1	Low consequence for loss of	Agricultural buildings where people
	human life, and economic, social	do not normally enter (e.g. storage
	or environmental consequences	buildings), greenhouses
	small or negligible	

Particular members of the structure may be designated at the same, higher or lower consequences class than for the entire structure.

EUROCODES Background and Applications Reliability differentiation (beta, parial factors)

26

Table 2 : Recommended minimum values for reliability index β (ultimate limit states)

Reliability Class	Minimum values for β				
	1 year reference period	50 years reference period			
RC3	5,2	4,3			
RC2	4,7	3,8			
RC1	4,2	3,3			

Table 3 : $K_{\rm FI}$ factor for actions

$K_{\rm FI}$ factor for actions	Reliability class		lass
	RC1	RC2	RC3
$K_{ m FI}$	0,9	1,0	1,1

 $K_{\rm FI}$ should be applied only to unfavourable actions.

Brussels, 18-20 February 2008 – Dissemination of information workshop

Zwolle

London Eye

27

Table 4 : Design supervision levels (DSL)

Design Supervision Levels	Characteristics	Minimum recommended requirements for checking of calculations, drawings and specifications
DSL3	Extended	Third party checking :
relating to	supervision	Checking performed by an organisation different from that
RC3		which has prepared the design
DSL2	Normal	Checking by different persons than those originally
relating to	supervision	responsible and in accordance with the procedure of the
RC2		organisation.
DSL1	Normal	Self-checking:
Relating to	supervision	Checking performed by the person who has prepared the
RC1		design

Table 5 : Inspection levels (IL)

Inspection Levels	Characteristics	Requirements
IL3	Extended	Third party
Relating to RC3	inspection	inspection
IL2	Normal inspection	Inspection in
Relating to RC2		accordance with the
		procedures of the
		organisation
IL1	Normal inspection	Self inspection
Relating to RC1		

The rules are to be given in the relevant execution standards.

Table 5 : Inspection levels (IL)

Inspection Levels	Characteristics	Requirements
IL3	Extended	Third party
Relating to RC3	inspection	inspection
IL2	Normal inspection	Inspection in
Relating to RC2		accordance with the procedures of the organisation
IL1 Relating to RC1	Normal inspection	Self inspection

The rules are to be given in the relevant execution standards.

B6(1) A partial factor for a material or product property or a member resistance can be reduced if an inspection class higher than that required according to Table B5 and/or more severe requirements are used

Relevant Background Documents

ISO 2394

JCSS documents (http://www.jcss.ethz.ch/)

Background document for the ENV-version of Basis of Design, ECCS/JCSS, 1996

IABSE Conferences Delft (1996) and Malta (2001)

Leonardo da Vinci Project CZ/02/B/F/PP-134007 Handbooks Implementtion of Eurocodes (2005)