

Eurocode 1 Accidental Actions

Ton Vrouwenvelder TNO Bouw / TU Delft

EN 1990 Section 2.1 Basic Requirements

(4)P A structure shall be designed and executed in such a way that it will not be damaged by events like

- explosion
- impact and
- consequences of human errors

to an extent disproportionate to the original cause

Note: Further information is given in EN 1991-1-7

EN 1990 guidance:

reducing hazards
 low sensitive structural form
 survival of local damage
 sufficient warning at collapse
 tying members

(25) Progressive collapse is not an inevitable feature of high system-built blocks. It can be avoided by the introduction of sufficient steel reinforcement to give continuity at the joints, and the adoption of a plan-form which provides for the arrangement of the load-bearing walls in such a way that the load is carried by alternative paths if part of the structure fails (paragraphs 129 and 188).

World Trade Center USA, 2001

Eurocode EN 1991-1-7

- 1. General
- 2. Classification
- 3. Design situations
- 4. Impact
- 5. Explosions

Annexes

- A. Design for localised failure
- **B.** Risk analysis
- **C.** Dynamics
- **D.** Explosions

3 Design strategies

4. Impact

Brussels, 18-20 February 2008 – Disse	mination of information workshop		8
Type of road	Vehicle type	$F_{d,x}$ [KN]	
Motorway	Truck	1000	
Country roads	Truck	750	
Urban area	Truck	500	
Parking place	Truck	150	
Parking place	Passenger car	50	

-

Annex B: scenario model

Annex C: force model

10

Table 4.2.1: Data for probabilistic collision force calculation

variable	designation	type	mean	stand dev
n	number of lorries/day	deterministic	5000	-
Т	reference time	deterministic	100 years	-
λ	accident rate	deterministic	10 ⁻¹⁰ m ⁻¹	-
b	width of a vehicle	deterministic	2.50 m	-
α	angle of collision course	rayleigh	10°	10°
v	vehicle velocity	lognormal	80 km/hr	10 km/hr
а	deceleration	lognormal	4 m²/s	1.3 m/s ²
m	vehicle mass	normal	20 ton	12 ton
k	vehicle stiffness	deterministic	300 kN/m	-

Brussels, 18-20 February 2008 – Dissemination of information workshop

Life time exceedence probability: 10⁻³

Design example: bridge column in motorway

Brussels, 18-20 February 2008 – Dissemination of information workshop

13

b	width	0.50 m
h	thickness	1.00 m
H	column height	5 m
f_y	yield stress steel	300 MPa
f _c	concrete strength	50 MPa
ρ	reinforcement ratio	0.01

$$M_{dx} = \frac{a(H-a)}{H} F_{dx} = \frac{1.25 \ (5.00 - 1.25)}{5.00} \ 1000 = 940 \ \text{kNm}$$

Resistance:

$$M_{Rdx} = 0.8 \ \omega \ h^2 \ b \ f_y$$

= 0.8 0.01 1.00² 0.50 300 000
= 1200 kNm > **940 kNm**

<u>5 + Annex D:</u>

gas explosions in buildings gas explosions in tunnels

dust explosions

INTERNAL NATURAL GAS EXPLOSIONS

The design pressure is the maximum of:

 $p_d = 3 + p_v$ $p_d = 3 + 0.5 p_v + 0.04/(A_v/V)^2$

 p_d = nominal equivalent static pressure [kN/m²]

 A_v = area of venting components [m²]

V = volume of room [m³]

Validity: $V < 1000 \text{ m}^3$; 0,05 m⁻¹ $\leq A_v / V \leq 0,15 \text{ m}^{-1}$ Annex B: load duration = 0.2 s

Design Example: Compartment in a multi story building

Compartment: 3 x 8 x 14 m

Two glass walls ($p_v = 3 \text{ kN/m}^2$) and two concrete walls

explosion pressure:

$$p_{Ed} = 3 + p_{\sqrt{2}} + 0.04/(A_{\sqrt{V}})^2$$

= 3 + 1.5 + 0.04 / 0.144² = 6.5 kN/m²
self weight = 3.0 kN/m²

live load = 2.0 kN/m^2

Design load combination (bottom floor):

$$p_{da} = p_{SW} + p_E + \psi_{1LL} p_{LL}$$

 $= 3.00 + 6.50 + 0.5^{2}.00 = 10.50 \text{ kN/m}^{2}$

Dynamic increase in load carrying capacity

$$\varphi_d = \mathbf{1} + \sqrt{\frac{p_{SW}}{p_{Rd}}} \sqrt{\frac{2 u_{max}}{g (\Delta t)^2}}$$

$$\Delta t = 0.2 \ s = load \ duration$$

$$g = 10 \ m/s^2$$

$$u_{max} = 0.20 \ m = midspan \ deflection \ at \ collapse$$

$$p_{sw} = 3,0 \ kN/m^2 \ and \ p_{Rd} = 7.7 \ kN/m^2$$

$$\varphi_d = [\mathbf{1} + \sqrt{\frac{3}{7.7}} \sqrt{\frac{2*0.20}{10(0.2)^2}}] = \mathbf{1.6}$$

 $p_{REd} = \varphi_d p_{Rd} = 1.6 * 7.7 = 12.5 \text{ kN/m}^2 > 10.5 \text{ kN/m}^2$

Conclusion: bottom floor system okay

Be careful for upper floors and columns

stabiliteit wordt niet ontleend aan de tunnel, maar aan naast de tunnel gelegen gebouwen

22

Brussels, 18-20 February 2008 – Dissemination of information workshop

Annex A: Classification of buildings

Consequences class	Example structures
class 1	low rise buildings where only few people are present
class 2, lower group	most buildings up to 4 stories
class 2, upper group	most buildings up to 15 stories
class 3	high rise building, grand stands etc.

Annex A: What to do

Class 1	No special considerations
Class 2, Lower Group Frames	Horizontal ties in floors
Class 2, Lower group	Full cellular shapes
Wall structures	Floor to wall anchoring.
Class 2, Upper Group	Horizontal ties and effective vertical ties
	OR limited damage on notional removal
	OR special design of key elements
Class 3	Risk analysis and/or advanced
	mechanical analysis recommended

Class 2a (lower group)

Class 2a (lower group)

27

 $T_i = 0.8 (g_k + \Psi q_k) sL = 0.8\{3+0.5*3\} x4x5 = 88 \text{ kN} > 75 \text{ kN}$ FeB 500: A = 202 mm² or 2 Ø12mm

28

Background typing forces

29

Suggestion:

design corner column as a key element.

Example structure, Class 2, Upper Group, Framed

 $L = 7.2 \text{ m}, s = 6 \text{ m}, q_k = g_k = 4 \text{ kN/m}^2, \Psi = 1.0$

Example structure

Internal horizontal tie force

 $T_i = 0.8 (g_k + \Psi q_k) \ s \ L = 0.8 \{4+4\} (6 \ x \ 7.2) = 276 \ kN$ $FeB \ 500: A = 550 \ mm^2 \ or \ 2 \ 018 \ mm.$

Vertical tying force:

 $T_i = (g_k + \Psi q_k) \ s \ L = \{4+4\} \ (6 \ x \ 7.2) = 350 \ kN$ FeB 500: A = 700 mm² or 3 \ \ \ \ \ 018 mm.

Class 2 higher class – walls

Tyings

 Horizontal:
 $T_i = F_t (g_k + \psi q_k) / 7,5 \times z/5 \ kN/m > F_t$

 Periphery:
 $T_p = F_t$

 Vertical:
 $T = 34 \ A / 8000 \times (H/t)^2$ in N > 100 kN/m

- $F_t = 20 + 4n_s kN/m < 60 kN/m$
- n_s = number of storeys
- z = span
- A = horizontal cross section of wall [mm²]
- H = free storey height
- t = wall thickness

Design Example:

- L = 7,2 m, H = 2,8 m en t = 250 mm
- $T = 34 \times 7200 \times 250/8000 \times (2800/250)^2 = 960 \times 10^3 \text{ N} = 960 \text{ kN} > 720 \text{ kN}$

maximal distance 5 m maximal distance from edge: 2.5 m

Result: 2 tyings of 480 kN

Effect of tyings in walls

Effect of vertical tyings

class 3: Risk analysis

Brussels, 18-20 February 2008 – Dissemination of information workshop

Presentation

38

Brussels, 18-20 February 2008 – Dissemination of information workshop

Risk Analysis Eastern Scheldt Storm Surge Barrier (1980)

Brussels, 18-20 February 2008 – Dissemination of information workshop

Office building Zwolle (The Netherlands)

London Eye

Points of attention in risk analysis

- list of hazards
- irregular structural shapes new
- construction types or materials
- number of potential casualties
- strategic role (lifelines)

hazards

Brussels, 18-20 February 2008 – Dissemination of information workshop

Forthquaka		
Eannquake		Vandalism
Landslide		Demonstrations
Tornado		Terrorist attack
Avalanche	Internal explosion	
Rock fall	External explosion	Design error
High groundwater	Internal fire	Material error
Flood	External fire	Construction orror
Volcano eruption	Impact by vehicle etc	User error
	Mining subsidence	Lack of maintenance
	Environmental attack	

Assessment of the probability of occurence of different hazards with different intensities

Assessment of the probability of different states of damage and corresponding consequences for given hazards Assessment of the probability of inadequate performance(s) of the damaged structure together with the corresponding consequence(s)

Risk calculation:

Step 1: identification of hazard H_i Step 2: damage D_j at given hazard Step 3: structural behavour S_k and cpmsequences $C(S_k)$

$$Risk = p(H_{i})p(D_{j}|H_{i})p(S_{k}|D_{j})C(S_{k})$$

Take sum over all hazards and damage types

Brussels, 18-20 February 2008 – Dissemination of information workshop

EN 1991-1-7: valuable document,

but not a masterpiece of European harmonisation

Reasons:

- □ large prior differences
- **—** member state autonomy in safety matters
- legal status different in every country

It will be interesting to see the National Annexes and NDP's .

Relevant Background Documents

ISO-documents

COST actions C28 and TU0601

Background document for the ENV-version of EC1 Part 2-7 (TNO, The Netherlands, 1999)

Leonardo da Vinci Project CZ/02/B/F/PP-134007 Handbooks Implementtion of Eurocodes (2005)