

Eurocode – EN 1990 Basis of Structural Design

Structural Analysis and Design by Testing

Gerhard Sedlacek Christian Müller RWTH Aachen

SECTION 5 STRUCTURAL ANALYSIS AND DESIGN ASSISTED BY TESTING

5.1 STRUCTURAL ANALYSIS

- **5.1.1 Structural modelling**
- **5.1.2 Static actions**
- **5.1.3 Dynamic actions**
- 5.1.4 Fire design

5.2 DESIGN ASSISTED BY TESTING

Contents Section 5

Brussels, 18-20 Febru	ary 2008 – Dissemir	nation of information	workshop			3	
		for calculation Appropriate structural models Design assi					
	predicting structural	involving relevant	acceptable accuracy	established engineering theory and		Design may be based on combination of calculations and tests see Annex D	
	behaviour a limit state 5.1.1(2)	at variables 5.1.1(1)	5.1.1(2)	practice, where necessary verified experimentally	-	The limited number of tests to be considered in the reliability required [5.2(2)]	
	- ()					Partial factors should be as in EN 1991 - 1999 [5.2(3)]	
				Modelling			
For static or equival	ent static act	ions	For dynamic act	tions		For fire design	
Modelling based on choice of force-deformation re of	appropriate elationship [5.1.2]	and [5.12(2)]	Modelling based - masses - stiffness - damping charac	on [5.13(1)]	Structural fire design analysis based on fire scenarios considering models for [5.1.4(1)] - temperature evolution in the structure - mechanical non-linear behaviour of [5.1.4(6)]	
members connection	ons ground	boundary conditions	 boundary conditions as intended [5.13(2 strengths for all structural and non-structural members 			Structure at elevated temperature (see EN 1992-1999) [5.1.4(4)]	
2nd order theory [5.1.2(3)] when increase of action effects significant			Contribution of soil modelled by equivalent springs and dash pots [5.1.3(4)]			 nominal fire exposure (5.1.4(3)) modelled fire exposure 	
see => EN 1990 - 199	99		Where relevant (i	for wind and seismic actio	ns)	Verification of the required performance by	
Indirect actions to be introduced in			fundamental mode is relevant from equivalent			either - global analysis	
analysis directly or by equivalent forces	as impose deformati	r analysis ed ons	Dynamic actions or in the frequence	ا also expressed as time hi cv domain to be dealt with	stories bv	analysis of subassemblies of member analysis or by tabulated data or test results	
↑		appropriate methods [5.1.3(6)]			Specific assessment methods within		
			Where relevant d [5.1.3(7)] see Ani	lynamic analysis also for S nex A, EN 1992 - 1999	SLS	 uniform or non uniform temperature with cross-section and along members analysis of individual members and 	
			In case of determ dynamic parts eit magnification fac	nination of equivalent station ther included implicitely or tors	c action by	interaction of members	

EUROCODES **Basis assumptions for static analysis** Brussels, 18-20 February 2008 - Dissemination of information workshop 5 **Actions** $\int \overline{\gamma}_{q} Q_{k}$ extreme T Q_k characteristic $\mathbf{T} = \Psi_0 \gamma_q \mathbf{Q}_k$ combination $\overline{\psi}_1 \mathbf{Q}_k$ frequent **n**- $\psi_2 Q_{qp}$ quasi permanent G permanent

Verification: ULS (static)

$$E_d = E_d \left\{ G + Q \right\} \le R_d = \frac{R_k}{\gamma_M}$$

Code for type of static analysis

Action effects in static analysis

EUROCODES

Consideration of stiffness of connections

Brussels, 18-20 February 2008 – Dissemination of information workshop

EUROCODES Background and Applications

Dynamic actions and response

10

Dynamic actions and response

11

Static and dynamic actions for traffic loads

EUROCODES Background and Applications

12

Stahlbau

13

Brussels, 18-20 February 2008 – Dissemination of information workshop

ANNEX D (INFORMATIVE) DESIGN ASSISTED BY TESTING

D1 SCOPE AND FIELD OF APPLICATION D2 SYMBOLS D3 TYPES OF TESTS **D4 PLANNING OF TESTS D5 DERIVATION OF DESIGN VALUES D6 GENERAL PRINCIPLES FOR STATISTICAL EVALUATIONS D7 STATISTICAL DETERMINATION OF A SINGLE PROPERTY** D7.1 General D7.2 Assessment via the characteristic value D7.3 Direct assessment of the design value for ULS verifications **D8 STATISTICAL DETERMINATION OF RESISTANCE MODELS** D8.1 General D8.2 Standard evaluation procedure (Method (a)) D8.2.1 General D8.2.2 Standard procedure D8.3 Standard evaluation procedure (Method (b)) D8.4 Use of additional prior knowledge

14

Evaluation of tests for single material properties and for resistances [D.5, D.6]

for presentation of resistance [6.3.5(2)]	for presentation of resistance [6.3.5(4)]			
$R_d = \frac{1}{\gamma_{Rd}} R\{X_d\}$	$R_d = \frac{1}{\gamma_M} R_K \{X_K\}$			
Determination of the single material property X_{k} and X_{d} from tests X_{i} [D.7]	Determination of resistance $R_{\kappa}(X_{\kappa})$ and $R_{d} \{X_{\kappa}\}$ form tests R_{ei} [D8			

Procedure via X _k :	[D.7.2]	Procedure via R _K :	[D.8.2]
$X_{Kn} = m_x \left(1 - k_n V_x\right)$		1. theoretical deterministic function \boldsymbol{R}_{t}	
k_n from table D1 m and V from		2. Comparison R_{exp} - R_t to improve R_t	
Σx_1		3. Probabilistic function $R = \overline{b} R_f \delta$	
$m_x = \frac{1}{n}$		4. Mean value deviation $\overline{b} \approx \frac{1}{n} \Sigma \frac{R_{ei}}{R_{ii}}$	
$S_{x}^{2} = \frac{1}{n-1} \Sigma (x_{i} - m_{x})^{2}$		5. Coefficient of variation v_{δ} for error te	erms δ _i
$V_x = \frac{S_x}{m}$		$\delta_i = \frac{R_{ei}}{\overline{b} R_{ii}} \qquad S_{\delta}^2 \approx \frac{1}{n-1} \Sigma \left(\delta_i - 1 \right)$	$)^{2}$
$X_{d} = \eta_{d} \frac{X_{K}(n)}{X_{K}(n)}$		$V_{_{\delta}}^{2} pprox S_{_{\delta}}^{2}$	
γ_m		6. Inclusion of v_{xi} for variables X_i	
		$V_R^2 = V_{\delta}^2 + \Sigma V_{x_i}^2$	

k_{dn} f

7.
$$R_k = \overline{b} grt(X_m) e^{-k_x a_n Q_n - k_x a_\delta Q_\delta - 0.5Q^2}$$
 k_n, k_{\parallel} from table D1 $Q_n \approx \sqrt{\Sigma V_{x_i}^2}$ $Q_\delta \approx \sqrt{V_\delta^2}$ $Q \approx \sqrt{V_\delta^2}$ $Q \approx \sqrt{V_\delta^2}$ $Q \approx \sqrt{V_\delta^2}$ $Q \approx \sqrt{V_\delta^2}$ $a_n \approx \frac{Q_n}{Q}$ $a_\delta \approx \frac{Q_\delta}{Q}$ 8. $R_d \approx \frac{R_k}{\gamma_M}$ Procedure via X_d :[D 7.3] $X_d = \eta m_x (1 - k_{dn} v_x)$ $R_d = \overline{b} grt(X_m) e^{-k_{dn} a_n Q_n - k_{dn} a_\delta Q_\delta - 0.5Q^2}$ k_{dn} from table D2 $k_{dn}, k_{d_{\parallel}}$ from table D2

16

Procedure to obtain reliable values R_k

Reliability links between Product Standard, Execution Standanrd and Eurocode 3

Brussels, 18-20 February 2008 – Dissemination of information workshop

EUROCODES

Determination of characteristic values R_k and γ_M **EUROCODES** values from tests

EUROCODES Background and Applications **Probability distribution of experimental data**

EUROCODES Background and Applications

Test evaluation for buckling curves and γ_{M} -values

23

